Abstract
SummaryMany studies involving causal questions are often concerned with understanding the causal pathways by which a treatment affects an outcome. Thus, the concept of ‘direct’versus‘indirect’ effects comes into play. We tackle the problem of disentangling direct and indirect effects by investigating new augmented experimental designs, where the treatment is randomized, and the mediating variable is not forced, but only randomly encouraged. There are two key features of our framework: we adopt a principal stratification approach, and we mainly focus on principal strata effects, avoiding involving a priori counterfactual outcomes. Using non-parametric identification strategies, we provide a set of assumptions, which allow us to identify partially the causal estimands of interest: the principal strata direct effects. Some examples are shown to illustrate our design and causal estimands of interest. Large sample bounds for the principal strata average direct effects are provided, and a simple hypothetical example is used to show how our augmented design can be implemented and how the bounds can be calculated. Finally our augmented design is compared and contrasted with a standard randomized design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Royal Statistical Society Series B: Statistical Methodology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.