Abstract
We extend to normal projective varieties defined over an arbitrary algebraically closed field a result of Ein, Lazarsfeld, Mustaţa, Nakamaye and Popa characterizing the augmented base locus (aka non-ample locus) of a line bundle on a smooth projective complex variety as the union of subvarieties on which the restricted volume vanishes. We also give a proof of the folklore fact that the complement of the augmented base locus is the largest open subset on which the Kodaira map defined by large and divisible multiples of the line bundle is an isomorphism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.