Abstract

The existing judicial reading comprehension datasets are relatively simple, and the answers to the questions can be obtained through single-step reasoning. However, the content of legal documents in actual scenarios is complex, making it problematic to infer correct results merely by single-step reasoning. To solve this type of issue, we promote the difficulties of questions included in Chinese Judicial Reading Comprehension (CJRC) dataset and propose two augmented versions, CJRC2.0 and CJRC3.0. These datasets are derived from Chinese judicial judgment documents in different fields and annotated by judicial professionals. Compared to CJRC, there are more types of judgment documents in the two datasets, and the questions become are more challenging to answer. For CJRC2.0, we only preserve complex questions that require to be solved by multi-step reasoning. Besides, we provide additional supporting facts to the answers. For CJRC3.0, we introduce a new question type, the multi-span question, which should be answered by extracting and combining multiple spans in the documents. We implement two powerful baselines to evaluate the difficulty of our proposed datasets. Our proposed datasets fill gaps in the field of explainable legal machine reading comprehension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.