Abstract

Sustained exposure to low oxygen concentration leads to profound changes in gene expression to restore oxygen homeostasis. Hypoxia-inducible factors (HIFs) comprise a group of transcription factors which accumulate under hypoxia and contribute to the complex changes in gene expression. Under normoxic conditions HIFs are degraded by prolyl-hydroxylases (PHD), however during hypoxia this degradation is inhibited causing HIF accumulation and subsequent changes in gene expression. Pulmonary neuroepithelial bodies (NEB) are innervated serotonin (5-HT)-producing cells distributed throughout the airway epithelium. These putative O(2) sensors are hypothesized to contribute to the ventilatory response to hypoxia. NEB dysfunction has been implicated in several paediatric lung diseases including neuroendocrine cell hyperplasia of infancy and sudden infant death syndrome, both characterized by a marked NEB hyperplasia with unknown functional significance. We have previously reported striking NEB hyperplasia in PHD1(-/-) mice making these mice a potential model to study the role of NEBs in paediatric lung diseases. Here we report in vitro studies on 5-HT release from NEB using this model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.