Abstract
In this article, associated to a (bordered) Legendrian graph, we study and show the equivalence between two categorical Legendrian isotopy invariants: the augmentation category, a unital $A_{\infty}$-category, which lifts the set of of the associated Chekanov-Eliashberg DGA, and a DG category of constructible on the front plane, with micro-support at contact infinity controlled by the (bordered) Legendrian graph. In other words, generalizing [21], we prove augmentations are sheaves in the singular case.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.