Abstract

We report two new circularly polarized luminescence (CPL)-active lanthanide complexes emissive in the near-infrared (NIR) region; using sphenol as a supporting ligand, we provide the first reported example of an NIR-emissive lanthanide complex supported by a chiral spirane. Inclusion of a quaternary carbon to impart axial chirality results in dramatic augmentation of the CPL strength of the resultant sphenolate complexes (glum ≤ 0.77 for [(sphenol)3ErNa3(thf)6]) compared to that of their contemporary biaryl-based axially chiral analogues (glum ≤ 0.47 for [(binol)3ErNa3(thf)6]). Despite similar structural parameters, the rigid spiro carbon of sphenol enables the strongest dissymmetry factors observed to date from Shibasaki-type complexes for both Yb and Er. We also demonstrate the sensitivity of the reported chiroptical measurements to small variations in instrumental parameters, such as bandpass, and suggest a standardized method or at least that additional detail should be included in future reports to allow for direct comparisons between newly published CPL emitters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call