Abstract

Aberrant extracellular matrix (ECM) remodeling in sebaceous glands and pilosebaceous units in the skin is associated with scar formation under acne conditions. To investigate the involvement of Propionibacterium acnes (P. acnes), a Gram-positive anaerobic microbial species, in ECM remodeling in sebaceous glands and pilosebaceous units, we examined the effects of P. acnes culture media, formalin-fixed P. acnes, and peptidoglycan (PGN) from Gram-positive bacteria walls on the production of promatrix metalloproteinase 2 (proMMP-2)/progelatinase A in hamster sebocytes and dermal fibroblasts. When hamster sebocytes (1.8×10(5) cells) and dermal fibroblasts (1×10(5) cells) were treated with P. acnes culture media and formalin-fixed P. acnes (corresponding to 1×10(6) and 1×10(7) bacterial cells), the production of proMMP-2 was augmented. In addition, PGN (5-50 µg/ml) dose-dependently augmented the production of proMMP-2 in both cells. Furthermore, the PGN (50 µg/ml)-augmented proMMP-2 production was resulted from an increase of its transcript. In contrast, there were no changes in cell proliferative activity in either the P. acnes or PGN-treated sebocytes and dermal fibroblasts, indicating that the augmented proMMP-2 production was not due to an increase in cell numbers. Therefore, these results provide novel evidence that PGN transcriptionally up-regulates the production of proMMP-2 in hamster sebocytes and dermal fibroblasts. Given an increase in the quantity of Gram-positive bacteria, including P. acnes in acne lesions, the aberrant ECM degradation may progress in sebaceous glands and pilosebaceous units, which is associated with acne scar formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.