Abstract

The effect of diazepam (DZP) on the GABA-induced macroscopic and microscopic Cl- current was investigated in isolated frog sensory neurons using both 'concentration-clamp' and patch-clamp techniques. At concentration range between 10(-9) and 10(-4) M, DZP itself evoked no response but potentiated time- and dose-dependently the subthreshold GABA responses, though at high DZP concentrations beyond 10(-5) M the potentiation ratio decreased. The potentiation effect was long-lasting and desensitized slowly over the course of several 10 minutes after washing-out of DZP. DZP potentiated GABA response without shifting the GABA reversal potential. The entire GABA dose-response curve was shifted in a parallel manner to the left by adding DZP without changing cooperatively: the Hill slope was 2.0. The potentiation of GABA response by DZP did not depend on either inward or outward direction of the Cl- current but slightly on the membrane potential. The time constants of activation of desensitization of GABA-gated Cl- current consisted of fast and slow components, respectively. The slow components were concentration-dependent, and significantly changed in the presence of DZP, while DZP had little effects on fast components. In the 'inside-out' configuration, the addition of DZP activated GABA-receptor ionophore complexes under subthreshold without changing the single Cl- channel conductance. It is concluded that DZP may act at a site to modulate GABA binding, in which DZP increases GABA binding affinity and also affects the kinetics of GABA-gated Cl- channels, indicating that DZP has dual action on the GABA-induced responses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.