Abstract

Semantic web technology is adapted to the internet of things (IoT) for web - based applications to globally connect the services. Web ontology language (OWL) domain ontology is a powerful machine - readable language for domain knowledge representation. The developer stored the IoT application relevant ontology in a repository or catalogue. Hence, IoT application - related ontology files are available for reus e, but many of the IoT application - relevant ontology files are publicly not available or inaccessible. The proposed idea is to extract the contextual knowledge of IoT applications that contain inaccessible ontology files. The context - wise specific domain I oT applications are not obtainable, hence respective ontology - based research papers are identified and their frequent terms are computed. The selected contextual dominant frequent terms from the transport domain are passed into the skip - gram flavour of wor d2vector modelled n atural language processing ( NLP ) corpus which produces most similar terms. The domain experts select the appropriate terms to annotate in OWL ontology for contextual knowledge augmentation. Finally, 1422 contextual terms were generated b ased on dominant terms of selected IoT applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.