Abstract

3D-printing of conductive carbon materials in sensing applications and energy storage devices has significant potential, however high resistivity of 3D-printed filaments poses a challenge. Strategies to enhance sensors post printing are time consuming and can reduce structural integrity. In this work, we investigated the effects different printing layer thickness and orientation can have on the electron transfer kinetics and resistivity of conductive materials. The response of these electrodes was investigated by cyclic voltammetry, electrochemical impedance spectroscopy and imaging. Electrodes printed with the lowest layer thickness of 0.1 mm in a vertical orientation had the greatest conductivity. With increasing print layer thickness and printing in a horizontal orientation, the electrode was more resistive. This work is the first to demonstrate the significant impact 3D-printing parameters can have on the electron transfer kinetics of carbon conductive electrodes. The implications of this study are important in defining the manufacturing process of electrodes for all applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call