Abstract

Chinese characters have semantic-rich compositional information in radical form. While almost all previous research has applied CNNs to extract this compositional information, our work utilizes deep graph learning on a compact, graph-based representation of Chinese characters. This allows us to exploit temporal information within the strict stroke order used in writing characters. Our results show that our stroke-based model has potential for helping large-scale language models on some Chinese natural language understanding tasks. In particular, we demonstrate that our graph model produces more interpretable embeddings shown through word subtraction analogies and character embedding visualizations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.