Abstract

Intratumoral inoculation with a herpes simplex virus (HSV) mutant, G207, as an in situ cancer vaccine has been shown to inhibit tumor growth by inducing tumor-specific immune responses. Here, as a step toward the clinical application of this therapeutic approach, we evaluated different protocols for enhancing the antitumor effect. First, in a bilaterally established tumor model with CT26 colon carcinoma, we demonstrated that multiple intratumoral inoculations with G207 induced a greater antitumor effect on both the inoculated and distant tumors than did 1 or 2 inoculations. Second, to boost this antitumor effect, we developed 2 strategies: multiple in situ cancer vaccines with G207 in combination with systemic administration of recombinant interleukin-12 (rIL-12) (G207/systemic rIL-12) or local administration of rIL-12 (G207/local rIL-12). The antitumor effects in both the inoculated and distant tumors by the combined treatments were significantly greater than by either G207 or rIL-12 treatment alone. G207/systemic rIL-12 and G207/local rIL-12 mediated the complete regression of both the inoculated and distant tumors in 67% and 79% of the animals, respectively. These results indicate that multiple intratumoral inoculations of G207 and systemic or local rIL-12 administration work synergistically to facilitate tumor regression and that this combination of treatments may have potential for treating cancer metastasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.