Abstract

This paper is a contribution to the microdosimetry of I-125. It shows microdosimetric spectra of individual and average disintegrations of I-125 for various target sizes and gives evidence for the relative contributions of energy-deposition events of low and high LET. It further presents information on the relative efficiencies of Auger-electrons and multiple charges in terms of local energy deposition, e.g. to model targets of DNA, and discusses their radiobiological implications, e.g. the microdosimetric understanding of the different efficiencies of specific and random incorporations of I-125. When I-125 is specifically incorporated into DNA, most of the energy deposition events are very large, e.g. above 40 keV/micron for a simulated target volume of 20 nm diameter, regardless of the number and energy of Auger electrons emitted. Therefore it is not necessary, for the discussion of the radiobiological implications, to distinguish between different classes of disintegrations. For unspecific, homogeneous incorporation of I-125 somewhere into tissue, about 20% of the dose to critical targets of 25 nm diameter is made up by disintegrations that happen to occur within these targets. When assuming that other critical targets and target structures can be neglected, this part of the dose will be equally effective as in the case of specific incorporation of I-125 into such target models. In addition, there are the normal, low-LET radiation effects from the other, 80% large fraction of the dose. With this information, for the biological systems and end points for which a short section of the elemental chromatine fiber can be taken as the relevant critical target, it is shown that the expected D37 value for homogeneous unspecific incorporation of I-125 can be estimated when the D37 for specific incorporation in DNA is known. For an example calculation, the estimated D37-value for nonspecific, homogeneous incorporation of I-125 would be about half as effective as specifically incorporated I-125. Thus, the microdosimetric data of the present work show that a high efficiency of homogeneous incorporation of I-125 into the cell nucleus is not necessarily in contradiction with the idea of I-125 disintegrations inside the DNA being the main cause of radiation action.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.