Abstract

A comparison is performed between measured and calculated Auger recombination rates for four different narrow-gap superlattices based on the InAs/GaSb/AlSb material system. The structures are designed for optical or electrical injection for mid-infrared laser applications, with wavelengths ranging from 3.4 to 4.1 μm. The electronic band structures are computed employing an accurate 14-band restricted basis set (superlattice K⋅p) methodology that utilizes experimental information about the low-energy electronic structure of the bulk constituents. The superlattice band structures and their associated matrix elements are directly employed to compute Auger recombination rates. Varying amounts of Auger recombination suppression are displayed by the various superlattices as compared to bulk mid-infrared systems. The greatest disagreement between theory and experiment is shown for the structure predicted to have the most Auger suppression, suggesting the suppression is sensitive either to theoretical or growth uncertainties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call