Abstract

Cortical excitability is commonly measured by applying magnetic stimulation in combination with measuring behavioral response. This measure has, however, some shortcomings including spatial limitation to the primary motor cortex and not accounting for intrinsic excitability fluctuations. Here, we use a measure for intrinsic excitability based on phase synchronization previously validated for epilepsy. We apply this measure in 30 healthy participants' magnetoencephalography (MEG) recordings during the exposure of auditory white noise, a stimulus that has been suggested to modify cortical excitability. Using cortical parcellation of the MEG source data, we could find a specific pattern of increased and decreased excitability while participants are exposed to white noise vs. silence. Specifically, excitability during white noise exposure decreases in the frontal lobe and increases in the temporal lobe. This study thus adds to the understanding of cortical excitability changes due to specific environmental stimuli as well as the spatial extent of these effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.