Abstract

High-pressure level and sudden sound, especially during an elevated state of alertness can elicit a startle response. Startle response can induce sudden, intense muscle activations. Some studies have shown that increasing neck muscle activation during impact situations can reduce the risk of concussion and neck injury. This research aimed to study muscle coactivation patterns, contraction latency and the level of muscle activation in startle response compared to the voluntary response. To achieve this goal, a testbed capable of applying impacts to the head in four directions was created. Auditory (115 dB) startle stimulus was delivered and muscle activation measured using sEMG on neck muscles during startle and voluntary responses. We investigated a 1000 ms time period starting at the time that the sound is played to the time at impact. Results indicate that the first muscle activation in startle response is 2.1 times higher, 5.9 times faster and involved more muscles than in a voluntary response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call