Abstract

The current study measured neural responses to investigate auditory stream segregation of noise stimuli with or without clear spectral contrast. Sequences of alternating A and B noise bursts were presented to elicit stream segregation in normal-hearing listeners. The successive B bursts in each sequence maintained an equal amount of temporal separation with manipulations introduced on the last stimulus. The last B burst was either delayed for 50% of the sequences or not delayed for the other 50%. The A bursts were jittered in between every two adjacent B bursts. To study the effects of spectral separation on streaming, the A and B bursts were further manipulated by using either bandpass-filtered noises widely spaced in center frequency or broadband noises. Event-related potentials (ERPs) to the last B bursts were analyzed to compare the neural responses to the delay vs. no-delay trials in both passive and attentive listening conditions. In the passive listening condition, a trend for a possible late mismatch negativity (MMN) or late discriminative negativity (LDN) response was observed only when the A and B bursts were spectrally separate, suggesting that spectral separation in the A and B burst sequences could be conducive to stream segregation at the pre-attentive level. In the attentive condition, a P300 response was consistently elicited regardless of whether there was spectral separation between the A and B bursts, indicating the facilitative role of voluntary attention in stream segregation. The results suggest that reliable ERP measures can be used as indirect indicators for auditory stream segregation in conditions of weak spectral contrast. These findings have important implications for cochlear implant (CI) studies—as spectral information available through a CI device or simulation is substantially degraded, it may require more attention to achieve stream segregation.

Highlights

  • Auditory stream segregation is an auditory process that occurs naturally in daily life

  • The d scores were not significantly correlated with the P3b amplitude data. Overall, results in both attentive and passive listening conditions confirm that Event-related potentials (ERPs) measures may be reliable indirect indicators of stream segregation based on less distinctive spectral separation cues

  • Significant mismatch negativity (MMN) activities were observed in the Global field power (GFP) data for the SSEP stimuli but not for the no spectral separation (no-SSEP) stimuli, indicating that spectral separation between A and B bursts was necessary for stream segregation at the preattentive level

Read more

Summary

Introduction

Auditory stream segregation ( referred to as auditory streaming) is an auditory process that occurs naturally in daily life. Behavioral laboratory studies (e.g., van Noorden, 1975, for a review, see Moore and Gockel, 2002) have indicated that frequency separation and stimulus presentation rate are critical for the formation of auditory streams. In the van Noorden study, when a frequency separation of two potential tonal streams was larger than the TCB or smaller than the FB, a listener would perceive two streams and one stream, respectively, regardless of their focused attention. Brochard et al (1999) further investigated the role of attention by presenting interleaved subsequences (streams) of tones to normal-hearing listeners. They evaluated attentional effort for stream segregation by measuring the threshold of a temporal offset of a given tone in a focused subsequence (stream) www.frontiersin.org

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call