Abstract
In this paper, a method for onset detection of music signals using auditory spectra is proposed. The auditory spectrogram provides a time-frequency representation that employs a sound processing model resembling the human auditory system. Recent work on onset detection employs DFT-based features describing spectral energy and phase differences, as well as pitch-based features. These features are often combined for maximizing detection performance. Here, the spectral flux and phase slope features are derived in the auditory framework and a novel fundamental frequency estimation algorithm based on auditory spectra is introduced. An onset detection algorithm is proposed, which processes and combines the aforementioned features at the decision level. Experiments are conducted on a dataset covering 11 pitched instrument types, consisting of 1829 onsets in total. Results indicate that auditory representations outperform various state-of-the-art approaches, with the onset detection algorithm reaching an F-measure of 82.6%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Audio, Speech, and Language Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.