Abstract
Seasonal changes in the structure and function of the vertebrate brain have been described in many species, particularly in seasonal breeders. However, it remains unclear whether sexual dimorphism varies between breeding seasons for specific brain regions. Auditory event-related potential (ERP) changes were evaluated in the Emei music frog (Babina daunchina) to assess sexual dimorphism and seasonal variations in auditory sensitivity. An acoustic playback experiment using an oddball paradigm design was conducted, in which two conspecific call types were used as deviant stimuli with synthesized white noise as standard stimulus. ERP components were analyzed for the telencephalon and mesencephalon of both sexes in the non-reproductive and reproductive states. Results show that auditory sensitivity is modulated by reproductive status, implying that seasonal plasticity is involved in auditory perception. Moreover, the amplitude of the N1 ERP component (mean amplitudes during the interval occurring 30-130ms after stimulus onset) is higher in females for the telencephalon and higher in males for the mesencephalon, regardless of reproductive status and acoustic stimulus type. These results show that auditory ERP responses for specific brain regions exhibit sexual dimorphism in the absence of exogenous sexual stimulation during both the two reproductive states in the music frog.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.