Abstract

Abstract Sleep spindles are transient 11–16 Hz brain oscillations generated by thalamocortical circuits. Their role in memory consolidation is well established, but how they play a role in sleep continuity and protection of memory consolidation against interference is unclear. One theory posits that spindles or a neural refractory period following their offset act as a gating mechanism, blocking sensory information en route to the cortex at the level of the thalamus. An alternative model posits that spindles do not participate in the suppression of neural responses to sound, although they can be produced in response to sound. We present evidence from three experiments using electroencephalography and magnetoencephalography in humans that examine different evoked responses in the presence of and following sleep spindles. The results provide convergent empirical evidence suggesting that auditory processing up to cortex is maintained during sleep spindles, and their refractory periods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.