Abstract

Learning to read is a fundamental developmental milestone, and achieving reading competency has lifelong consequences. Although literacy development proceeds smoothly for many children, a subset struggle with this learning process, creating a need to identify reliable biomarkers of a child’s future literacy that could facilitate early diagnosis and access to crucial early interventions. Neural markers of reading skills have been identified in school-aged children and adults; many pertain to the precision of information processing in noise, but it is unknown whether these markers are present in pre-reading children. Here, in a series of experiments in 112 children (ages 3–14 y), we show brain–behavior relationships between the integrity of the neural coding of speech in noise and phonology. We harness these findings into a predictive model of preliteracy, revealing that a 30-min neurophysiological assessment predicts performance on multiple pre-reading tests and, one year later, predicts preschoolers’ performance across multiple domains of emergent literacy. This same neural coding model predicts literacy and diagnosis of a learning disability in school-aged children. These findings offer new insight into the biological constraints on preliteracy during early childhood, suggesting that neural processing of consonants in noise is fundamental for language and reading development. Pragmatically, these findings open doors to early identification of children at risk for language learning problems; this early identification may in turn facilitate access to early interventions that could prevent a life spent struggling to read.

Highlights

  • Three aspects of auditory-neurophysiological processing have often been associated with literacy: variability of neural firing [1,2], auditory system timing [3,4], and processing detailed acoustic features such as those found in consonants [5,6]

  • These results suggest that the neural coding of speech in noise plays a fundamental role in language development

  • Children who struggle to listen in noisy environments may struggle to make meaning of the language they hear on a daily basis, which can in turn set them at risk for literacy challenges

Read more

Summary

Introduction

Three aspects of auditory-neurophysiological processing have often been associated with literacy: variability of neural firing [1,2], auditory system timing [3,4], and processing detailed acoustic features such as those found in consonants [5,6]. This neural coding is thought to play a pivotal role in reading and language development [5,7,8] and may reflect the precision of neural processing in the central auditory system, which likely develops through the integrated neural coding of speech across multiple timescales, including prosodic, syllabic, and phonemic acoustic information [8,9,10]. Should children with poor processing in noise grow up forced to make sense of speech in these noisy environments, they may fall behind their peers in language development

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.