Abstract

The semiacute phase of mild traumatic brain injury (mTBI) is associated with deficits in the cognitive domains of attention, memory, and executive function, which previous work suggests may be related to a specific deficit in disengaging attentional focus. However, to date, there have only been a few studies that have employed dynamic imaging techniques to investigate the potential neurological basis of these cognitive deficits during the semiacute stage of injury. Therefore, event-related functional magnetic resonance imaging was used to investigate the neurological correlates of attentional dysfunction in a clinically homogeneous sample of 16 patients with mTBI during the semiacute phase of injury (<3 weeks). Behaviorally, patients with mTBI exhibited deficits in disengaging and reorienting auditory attention following invalid cues as well as a failure to inhibit attentional allocation to a cued spatial location compared to a group of matched controls. Accordingly, patients with mTBI also exhibited hypoactivation within thalamus, striatum, midbrain nuclei, and cerebellum across all trials as well as hypoactivation in the right posterior parietal cortex, presupplementary motor area, bilateral frontal eye fields, and right ventrolateral prefrontal cortex during attentional disengagement. Finally, the hemodynamic response within several regions of the attentional network predicted response times better for controls than for patients with mTBI. These objective neurological findings represent a potential biomarker for the behavioral deficits in spatial attention that characterize the initial recovery phase of mTBI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call