Abstract

Children’s obligatory auditory event-related potentials (ERPs) to speech and nonspeech sounds have been shown to associate with reading performance in children at risk or with dyslexia and their controls. However, very little is known of the cognitive processes these responses reflect. To investigate this question, we recorded ERPs to semisynthetic syllables and their acoustically matched nonspeech counterparts in 63 typically developed preschoolers, and assessed their verbal skills with an extensive set of neurocognitive tests. P1 and N2 amplitudes were larger for nonspeech than speech stimuli, whereas the opposite was true for N4. Furthermore, left-lateralized P1s were associated with better phonological and prereading skills, and larger P1s to nonspeech than speech stimuli with poorer verbal reasoning performance. Moreover, left-lateralized N2s, and equal-sized N4s to both speech and nonspeech stimuli were associated with slower naming. In contrast, children with equal-sized N2 amplitudes at left and right scalp locations, and larger N4s for speech than nonspeech stimuli, performed fastest. We discuss the possibility that children’s ERPs reflect not only neural encoding of sounds, but also sound quality processing, memory-trace construction, and lexical access. The results also corroborate previous findings that speech and nonspeech sounds are processed by at least partially distinct neural substrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.