Abstract

Kv1.1 subunits of low voltage-activated (Kv) potassium channels are encoded by the Kcna1 gene and crucially determine the synaptic integration window to control the number and temporal precision of action potentials in the auditory brainstem of mammals and birds. Prior electrophysiological studies showed that auditory signaling is compromised in monaural as well as in binaural neurons of the auditory brainstem in Kv1.1 knockout mice (Kcna1−/−). Here we examine the behavioral effects of Kcna1 deletion on sensory tasks dependent on either binaural processing (detecting the movement of a sound source across the azimuth), monaural processing (detecting a gap in noise), as well as binaural summation of the acoustic startle reflex (ASR). Hearing thresholds measured by auditory brainstem responses (ABR) do not differ between genotypes, but our data show a much stronger performance of wild type mice (+/+) in each test during binaural hearing which was lost by temporarily inducing a unilateral hearing loss (through short term blocking of one ear) thus remarkably, leaving no significant difference between binaural and monaural hearing in Kcna1−/− mice. These data suggest that the behavioral effect of Kv1.1 deletion is primarily to impede binaural integration and thus to mimic monaural hearing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.