Abstract

Otoacoustic emissions (OAEs) are often measured to non-invasively determine activation of medial olivocochlear (MOC) efferents in humans. Usually these experiments assume that ear-canal noise remains constant. However, changes in ear-canal noise have been reported in some behavioral experiments. We studied the variability of ear-canal noise in eight subjects who performed a two-interval-forced-choice (2IFC) sound-level-discrimination task on monaural tone pips in masker noise. Ear-canal noise was recorded directly from the unstimulated ear opposite the task ear. Recordings were also made with similar sounds presented, but no task done. In task trials, ear-canal noise was reduced at the time the subject did the discrimination, relative to the ear-canal noise level earlier in the trial. In two subjects, there was a decrease in ear-canal noise, primarily at 1–2 kHz, with a time course similar to that expected from inhibition by MOC activity elicited by the task-ear masker noise. These were the only subjects with spontaneous OAEs (SOAEs). We hypothesize that the SOAEs were inhibited by MOC activity elicited by the task-ear masker. Based on the standard rationale in OAE experiments that large bursts of ear-canal noise are artifacts due to subject movement, ear-canal noise bursts above a sound-level criterion were removed. As the criterion was lowered and more high- and moderate-level ear-canal noise bursts were removed, the reduction in ear-canal noise level at the time of the 2IFC discrimination decreased to almost zero, for the six subjects without SOAEs. This pattern is opposite that expected from MOC-induced inhibition (which is greater on lower-level sounds), but can be explained by the hypothesis that subjects move less and create fewer bursts of ear-canal noise when they concentrate on doing the task. In no-task trials for these six subjects, the ear-canal noise level was little changed throughout the trial. Our results show that measurements of MOC effects on OAEs must measure and account for changes in ear-canal noise, especially in behavioral experiments. The results also provide a novel way of showing the time course of the buildup of attention via the time course of the reduction in ear-canal noise.

Highlights

  • MATERIALS AND METHODSMedial olivocochlear (MOC) efferent activity has long been hypothesized to facilitate hearing in noise (Nieder and Nieder, 1970; Micheyl and Collet, 1993; Guinan, 1996)

  • The time courses of the decreases in ear-canal noise in these two subjects (323, 326) are similar to the time courses expected from inhibition due to METHODSMedial olivocochlear (MOC) efferent activity elicited by the task-ear masker noise (Figure 5E)

  • We found reductions in ear-canal noise that were large when no ear-canal noise bursts were rejected, but became small when a strict criterion was used that removed most of the bursts of ear-canal noise

Read more

Summary

Introduction

MATERIALS AND METHODSMedial olivocochlear (MOC) efferent activity has long been hypothesized to facilitate hearing in noise (Nieder and Nieder, 1970; Micheyl and Collet, 1993; Guinan, 1996). Experiments, ear-canal noise was indirectly measured during a 30 ms silent period by a doubleevoked technique that yielded a measure termed a ‘‘nonlinear stimulus frequency otoacoustic emission’’ or ‘‘nSFOAE’’ (Walsh et al, 2010). During both auditory and visual tasks there was a reduction in ear-canal noise (i.e., a reduction in the nSFOAE) relative to when the subject was presented the same stimuli but did not do a task (Walsh et al, 2014a,b, 2015). The reduction was similar in both the attended ear and the opposite ear. Walsh et al (2014a,b, 2015) hypothesized that cochlear-amplified random vibrations within the cochlea created backward traveling waves that produced ear-canal noise, and activation of MOC efferents reduced cochlear amplification and reduced the ear-canal noise

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.