Abstract

To address the limitations of traditional cepstrum or LPC based front-end processing methods for automatic speech recognition, more elaborate methods based on physiological models of the human auditory system may be used to achieve more robust speech recognition in adverse environments. For this purpose, a modified version of a model of the primary auditory cortex featuring a three dimensional mapping of auditory spectra [Wang and Shamma, IEEE Trans. Speech Audio Process. 3, 382–395 (1995)] is adopted and investigated for its use as an improved front-end processing method. The study is conducted in two ways: first, by relating the model’s redundant representation to traditional spectral representations and showing that the former not only encompasses information provided by the latter, but also reveals more relevant information that makes it superior in describing the identifying features of speech signals; and second, by observing the statistical features of the representation for various classes of sound to show how different identifying features manifest themselves as specific patterns on the cortical map, thereby becoming a place-coded data set on which detection theory could be applied to simulate auditory perception and cognition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.