Abstract
Background and purposeMagnetic Resonance Imaging (MRI) is increasingly being used in radiotherapy (RT). However, geometric distortions are a known challenge of using MRI in RT. The aim of this study was to demonstrate feasibility of a national audit of MRI geometric distortions. This was achieved by assessing large field of view (FOV) MRI distortions on a number of scanners used clinically for RT.Materials and methodsMRI scans of a large FOV MRI geometric distortion phantom were acquired on 11 MRI scanners that are used clinically for RT in the UK. The mean and maximum distortions and variance between scanners were reported at different distances from the isocentre.ResultsFor a small FOV representing a brain (100–150 mm from isocentre) all distortions were < 2 mm except for the maximum distortion of one scanner. For a large FOV representing a head and neck/pelvis (200–250 mm from isocentre) mean distortions were < 2 mm except for one scanner, maximum distortions were > 10 mm in some cases. The variance between scanners was low and was found to increase with distance from isocentre.ConclusionsThis study demonstrated feasibility of the technique to be repeated in a country wide geometric distortion audit of all MRI scanners used clinically for RT. Recommendations were made for performing such an audit and how to derive acceptable limits of distortion in such an audit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.