Abstract

Although it has been previously reported that audiovisual integration can modulate performance on some visual tasks, multisensory interactions have not been explicitly assessed in the context of different visual processing pathways. In the present study, we test auditory influences on visual processing employing a psychophysical paradigm that reveals distinct spatial contrast signatures of magnocellular and parvocellular visual pathways. We found that contrast thresholds are reduced when noninformative sounds are presented with transient, low-frequency Gabor patch stimuli and thus favor the M-system. In contrast, visual thresholds are unaffected by concurrent sounds when detection is primarily attributed to P-pathway processing. These results demonstrate that the visual detection enhancement resulting from multisensory integration is mainly articulated by the magnocellular system, which is most sensitive at low spatial frequencies. Such enhancement may subserve stimulus-driven processes including the orientation of spatial attention and fast, automatic ocular and motor responses. This dissociation helps explain discrepancies between the results of previous studies investigating visual enhancement by sounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.