Abstract

Sequential Monte Carlo probability hypothesis density (SMC-PHD) filtering is a popular method used recently for audio-visual (AV) multi-speaker tracking. However, due to the weight degeneracy problem, the posterior distribution can be represented poorly by the estimated probability, when only a few particles are present around the peak of the likelihood density function. To address this issue, we propose a new framework where particle flow (PF) is used to migrate particles smoothly from the prior to the posterior probability density. We consider both zero and non-zero diffusion particle flows (ZPF/NPF), and developed two new algorithms, AV-ZPF-SMC-PHD and AV-NPF-SMC-PHD, where the speaker states from the previous frames are also considered for particle relocation. The proposed algorithms are compared systematically with several baseline tracking methods using the AV16.3, AVDIAR and CLEAR datasets, and are shown to offer improved tracking accuracy and average effective sample size (ESS).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.