Abstract
This paper addresses the problem of under-determined convolutive audio source separation in a semi-oracle configuration where the mixing filters are assumed to be known. We propose a separation procedure based on the convolutive transfer function (CTF), which is a more appropriate model for strongly reverberant signals than the widely-used multiplicative transfer function approximation. In the short-time Fourier transform domain, source signals are estimated by minimizing the mixture fitting cost using Lasso optimization, with a l 1 -norm regularization to exploit the spectral sparsity of source signals. Experiments show that the proposed method achieves satisfactory performance on highly reverberant speech mixtures, with a much lower computational cost compared to time-domain dual techniques.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.