Abstract

An audio recording is subject to a number of possible distortions and artifacts. Consider, for example, artifacts due to acoustic reverberation and background noise. The acoustic reverberation depends on the shape and the composition of the room, and it causes temporal and spectral smearing of the recorded sound. The background noise, on the other hand, depends on the secondary audio source activities present in the evidentiary recording. Extraction of acoustic cues from an audio recording is an important but challenging task. Temporal changes in the estimated reverberation and background noise can be used for dynamic acoustic environment identification (AEI), audio forensics, and ballistic settings. We describe a statistical technique based on spectral subtraction to estimate the amount of reverberation and nonlinear filtering based on particle filtering to estimate the background noise. The effectiveness of the proposed method is tested using a data set consisting of speech recordings of two human speakers (one male and one female) made in eight acoustic environments using four commercial grade microphones. Performance of the proposed method is evaluated for various experimental settings such as microphone independent, semi- and full-blind AEI, and robustness to MP3 compression. Performance of the proposed framework is also evaluated using Temporal Derivative-based Spectrum and Mel-Cepstrum (TDSM)-based features. Experimental results show that the proposed method improves AEI performance compared with the direct method (i.e., feature vector is extracted from the audio recording directly). In addition, experimental results also show that the proposed scheme is robust to MP3 compression attack.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.