Abstract
Norikura Volcano has not been active during the last 10,000 years in spite of the activity of the surrounding volcanic mountains. To study past volcanic activities, geological studies were carried out extensively. However, quite a few geophysical investigations were conducted to contribute to volcanology. Our objective is to detect the present subsurface structure of Norikura Volcano and to define volcanic stratifications. In the vicinity of Norikura Volcano, geothermal fields are still active. Subsurface volcanic rocks in this area have been exposed to geothermal activity and altered. To comprehend volcanic stratifications of Norikura and geothermal activity, we conducted audio frequency magneto-telluric (AMT) surveys around Norikura Volcano. AMT survey is useful in clearly defining the resistivity structure related to volcanic regions. The AMT data were acquired over a frequency range 10 Hz–10 kHz. Decomposition analysis was applied to the tensor impedance data. Subsequently, apparent resistivity and phase data were inverted using a two-dimensional magneto-telluric (MT) inversion and a model of Norikura was derived. The final model manifests that the surface resistors are in agreement with andesite lava or dacite lava. As for the deeper structure, a horizontal conductor is situated above resistive basements. The alteration of the conductor was weak, while basement rocks were strongly altered and/or heated through the thermal activity. The existence of these layers seems to indicate the degree of thermal activity of Norikura Volcano.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Volcanology and Geothermal Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.