Abstract
In this paper, multi-source multi-relay power allocation in cooperative wireless networks is considered. An ascending-clock auction is proposed to efficiently allocate cooperative relay power among multiple source nodes in a distributed fashion. In particular, each source node reports its optimal power demand to each relay node based on the relays' announced prices. It is proven that the proposed auction algorithm enforces truthful power demands and converges in a finite number of time- steps to the unique Walrasian Equilibrium allocation that maximizes the social welfare. Numerical results are presented to supplement the theoretical analysis and demonstrate the efficiency of the proposed distributed relay power allocation algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.