Abstract
This paper presents an auction-based consensusmechanism for cooperative targets tracking using minimum numbers of mobile sensors in order to reduce energy consumption due to sensor mobilization. After targets are detected, they are clustered using hybrid subtractive K-means clustering technique to reduce the number of trackers needed to track these detected targets. The proposed target tracking process is based on an Extended Kohonen neural network. In order to decrease the network sensitivity to initial conditions, a supervised learning technique is used to get the initial weights of unsupervised Extended Kohonen Map instead of random initialization. An auction-based consensus mechanism is used as a cooperation methodology between trackers during tracking. Monitoring sensors either remain stationary or begin following their targets is based on this mechanism. The simulation results confirms that the proposed approach outperforms other approaches in energy saving and achieves better coverage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Advanced Computational Intelligence and Intelligent Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.