Abstract

In this article we develop an analogue of Aubry-Mather theory for a class of dissipative systems, namely conformally symplectic systems, and prove the existence of interesting invariant sets, which, in analogy to the conservative case, will be called the Aubry and the Mather sets. Besides describing their structure and their dynamical significance, we shall analyze their attracting/repelling properties, as well as their noteworthy role in driving the asymptotic dynamics of the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.