Abstract
Consider a Hamiltonian system with Hamiltonian of the form H(x, t, p) where H is convex in p and periodic in x, and t and x ∈ ℝ1. It is well-known that its smooth invariant curves correspond to smooth Z2-periodic solutions of the PDE ut + H(x, t, u)x = 0. In this paper, we establish a connection between the Aubry-Mather theory of invariant sets of the Hamiltonian system and Z2-periodic weak solutions of this PDE by realizing the Aubry-Mather sets as closed subsets of the graphs of these weak solutions. We show that the complement of the Aubry-Mather set on the graph can be viewed as a subset of the generalized unstable manifold of the Aubry-Mather set, defined in (2.24). The graph itself is a backward-invariant set of the Hamiltonian system. The basic idea is to embed the globally minimizing orbits used in the Aubry-Mather theory into the characteristic fields of the above PDE. This is done by making use of one- and two-sided minimizers, a notion introduced in [12] and inspired by the work of Morse on geodesics of type A [26]. The asymptotic slope of the minimizers, also known as the rotation number, is given by the derivative of the homogenized Hamiltonian, defined in [21]. As an application, we prove that the Z2-periodic weak solution of the above PDE with given irrational asymptotic slope is unique. A similar connection also exists in multidimensional problems with the convex Hamiltonian, except that in higher dimensions, two-sided minimizers with a specified asymptotic slope may not exist. © 1999 John Wiley & Sons, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.