Abstract

A controllable composition and morphology AuAg/ZnO catalyst, prepared by an easily scalable method, was, for the first time, explored for the electrocatalytic reduction of CO2. It was found that the composition of the bimetallic alloy contributes to the overall CO2 reduction performance. In particular, as also demonstrated by density functional theory calculations, CO production increases, decreasing the Au content in the catalyst alloy. The experimental investigation reveals that the products are H2 and CO, which production rate increases in the presence of ZnO, up to a Faradic efficiency of 94.7 % at 0.4 V. On the other hand, controlling the oleic acid covering it is possible to modulate the surface properties allowing to obtain, at 0.6 V, H2/CO ratios equal to 1.1 and 1.9 for nanocatalysts thermally treated for 2 and 5 h, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.