Abstract

Among coinage metal nanoclusters with 55 atoms, only Ag55- and Cu55- are the geometric magic-number clusters, as both exhibit icosahedral symmetry. Au55-, however, exhibits much lower symmetry due largely to the strong relativistic bonding effect. In this study, we collect a much larger population (>10,000 isomers) of low-energy isomers of Au55- to Au60- by using the combined density-functional theory and basin-hopping global optimization method. We also include the spin-orbit effect in the density-functional theory computation to achieve simulated photoelectron spectra in quantitative fashion. Remarkably, we uncover that the Au13 core with the highest icosahedral ( Ih) symmetry emerges at the size of Au60-. Stability analysis suggests that Au57- with 58 valence electrons, an electronic magic number, is the relatively more stable cluster in the size range considered. Overall, in this size range we reveal a compromise between the trend toward having a perfect icosahedral 13-atom core and the strong relativistic bonding effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.