Abstract

A stable hollow Au20Si12 cage with Ih symmetry has been predicted using first-principles density functional theory. The stability of the cage-like Au20Si12 structure is verified by vibrational frequency analysis and molecular dynamics simulations. A relatively large highest occupied molecular orbital-lowest unoccupied molecular orbital gap of 1.057 eV is found. Electronic structure analysis shows that clearly p-d hybridizations between Si atoms and Au atoms are of great importance for the stability of Au20Si12 cage. The cage-like Au20Si12 structure may have potential applications in semiconductor industry and microelectronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call