Abstract

The enhanced near-field amplitude of localized surface plasmon resonance in the proximity of metal nanoparticles can boost the photocatalytic activity of the neighboring semiconductor, which has been proven and has attracted wide interest recently. Since the plasmon resonance energy strongly depends on the metal particle size and shape, interparticle spacing, and dielectric property of the surrounding medium, it is available to improve the photocatalytic activity of the neighboring semiconductor by designing and synthesizing targeted metal nanoparticles or assembled nanostructures. In this paper, we propose a Au/TiO2/Au nanostructure with the thickness of the middle layer TiO2 nanosheets around 5 nm, which satisfies the distance needed for the coupling effect between the opposite and nearly touching Au nanoparticles, and thus, it can be used as a “plasmonic coupling photocatalyst”. Compared with the bare TiO2 nanosheet films, the photocurrent density of this favorable nanostructure exhibited a significant...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.