Abstract

To improve the separation efficiency of photoinduced charge carries, Au@SiO2 nanoparticles (NPs) with core–shell structure were loaded onto the surface of TiO2 nanorods grown on fluorine-doped tin oxide substrate by a facile two-step process. The resulted Au@SiO2/TiO2 photoanodes were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, as well as photoelectrochemical measurements. Compared with pristine TiO2 nanorod film, the Au@SiO2/TiO2 films showed remarkable enhancement in photoelectrochemical water splitting, with incident photon-to-current conversion efficiency increasing from 31 % to 37 % at 380 nm at 0.7 V versus saturated calomel electrode. This could be interpreted by the effect of metallic surface plasmon resonance of Au@SiO2 NPs, which would generate an intense electromagnetic field with spatially nonhomogenous distributed intensity. As a result, the charge carriers generated in the near-surface region of TiO2 nanorods could be easily separated. This modification method based on the effect of metallic surface plasmon resonance for promoted charge carrier separation provides a promising way to develop semiconductor photoelectrodes with high solar water-splitting performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.