Abstract

Diabetic chronic wound healing is a critical clinical challenge due to the particularity of wound microenvironment, including hyperglycemia, excessive oxidative stress, hypoxia, and bacterial infection. Herein, we developed a multifunctional self-healing hydrogel dressing (defined as OHCN) to regulate the complex microenvironment of wound for accelerative diabetic wound repair. The OHCN hydrogel dressing was constructed by integrating Au-Pt alloy nanoparticles into a hydrogel (OHC) that formed through Schiff-base reaction between oxidized hyaluronic acid (OHA) and carboxymethyl chitosan (CMCS). The dynamic cross-linking of OHA and antibacterial CMCS imparted the OHCN hydrogel dressing with excellent antibacterial and self-healing properties. Meanwhile, Au-Pt alloy nanoparticles endowed the OHCN hydrogel dressing with the functions of lowering blood glucose, alleviating oxidative damage, and providing O2 by simulating glucose oxidase and catalase. Through a synergistic combination of OHC hydrogel and Au-Pt alloy nanoparticles, the resulted OHCN hydrogel dressing significantly ameliorated the pathological microenvironment and accelerated the healing rate of diabetic wound. The proposed nanozyme-decorated multifunctional hydrogel offers an efficient strategy for the improved management of diabetic chronic wound.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call