Abstract
Point-of-care testing (POCT) technologies facilitate onsite detection of pathogens in minutes to hours. Among various POCT approaches, pressure-based sensors that utilize gas-generating reactions, particularly those catalyzed by nanozymes (e.g., platinum nanoparticles, PtNPs, or platinum-coated gold nanoparticles, and Au@PtNPs) have been shown to provide rapid and sensitive detection capabilities. The current study introduces Au-Pt alloy-coated gold nanoparticles (Au@AuPtNPs), an innovative nanozyme with enhanced catalytic activity and relatively high stability. For pathogen detection, Au@AuPtNPs are modified with H1 or H2 hairpin DNAs that can be triggered to undergo a hybridization chain reaction (HCR) that leads to their aggregation upon recognition by an initiator strand (Ini) with H1-/H2-complementary aptamers tethered to magnetic beads (MBs). Pathogen binding to the aptamer exposes Ini, which then binds Au@AuPtNPs and initiates a HCR, resulting in Au@AuPtNP aggregation on MBs. These Au@AuPtNP aggregates exhibit strong catalysis of O2 from the H2O2 substrate, which is measured by a pressure meter, enabling detection of Escherichia coli (E. coli) O157:H7 at concentrations as low as 3 CFU/mL with high specificity. Additionally, E. coli O157:H7 could also be detected in simulated water and tea samples. This method eliminates the need for costly, labor- and training-intensive instruments, supporting its further testing and validation for deployment as a rapid-response POCT application in the detection of bacterial contaminants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.