Abstract

We report an ultrasensitive and selective single nanowire-on-film (SNOF) surface-enhanced resonance Raman scattering (SERRS) sensor for Hg(2+) detection based on structure-switching double stranded DNAs (dsDNAs). Binding of Hg(2+) induces conformational changes of the dsDNAs and let a Raman reporter get close to the SNOF structure, thereby turning on SERRS signal. The well-defined SNOF structure provides a detection limit of 100 pM with improved accuracy in Hg(2+) detection. This sensor is stable over a considerable amount of time and reusable after simple treatment. Since this SNOF sensor is composed of a single Au NW on a film, development of a multiplex sensor would be possible by employing NWs modified by multiple kinds of aptamers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call