Abstract

In this proof-of-concept study, gold nanoparticles (AuNPs) were immobilized on glassy carbon electrode (GCE) surfaces using a surface-anchored diazonium salt of 4-aminothiophenol (GCE-Ph-S-AuNPs). X-ray photoelectron spectroscopy (XPS) studies confirmed the attachment of the AuNPs via 4-thiophenol onto the surface of the modified electrode. Differential pulse voltammetry (DPV) was performed for the simultaneous determination of guanine (G) and 8-hydroxyguanine (8-OH-G). The calibration curves were linear up to 140 µM and 60 µM with a limit of detection of 0.02 µM and 0.021 µM for G and 8-OH-G, respectively. Moreover, chronoamperometric studies were carried out for the determination of diffusion coefficients of 8-OH-G and G. The GCE-Ph-S-AuNPs were also applied in genomic DNA-spiked samples for the determination of G and 8-OH-G with recovery rates between 98.5% and 103.3%. The novel electrochemical surface provided a potential platform for the sensitive detection of 8-OH-G related to oxidative stress-induced DNA damage in clinical studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.