Abstract

Thin films composed of Au nanoparticles dispersed inside a TiO2−NiO mixed oxide matrix are prepared by the sol−gel method, resulting in nanostructured composites with a morphology and crystallinity that depend on synthesis parameters and thermal treatment. Their functional activity as hydrogen sulfide optical sensors is due to Au-localized surface plasmon resonance (SPR) which is reversible. The detection sensitivity is shown to be down to a few parts per million of H2S, and almost no interference in response is observed during simultaneous exposure to CO or H2, resulting in a highly sensitive and selective sensor for hydrogen sulfide detection. For mechanistic studies, experimental evidence using reaction product analysis and thin film surface characterization suggests a direct catalytic oxidation of H2S over the Au−TiO2−NiO nanocomposite film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.