Abstract

We demonstrated a simple, one-step route for assembling Au nanoparticles (NPs) on N-containing polymer nanospheres through in situ reductive growth process.Using resorcinol–melamine–formaldehyde resin nanospheres (RMF NSs) as a functional platform, neither a surfactant/ligand nor pretreatment is needed in the synthetic process of Au@RMF NSs hybrid nanostructure. When used as a catalytic media for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol, the Au@RMF NSs hybrid nanostructures show significantly enhanced catalytic performance than the ever reported Au-based catalyst. The absorption modal of 4-NP on this nanostructure is also discussed by theoretical calculations using density functional theory. The calculated results verify the preferential capture of 4-NP by the N-containing functionalities of RMF NSs, which is critical step for the acceleration of Au-based catalytic reaction kinetics, leading to the remarkable improved catalytic behavior. The superior features of RMF NSs as well as minimal economical cost compared with other polymer and non-polymer will promote further interest in the field of N-containing catalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.