Abstract

Fabrication of a glucose biosensor based on Au-cluster emission quenching in the UV region is reported. The glucose biosensor is highly sensitive to β-d-glucose in 2.5–25.0mM range as confirmed from a linear calibration plot between Au-cluster colloid emission intensity as a function of β-d-glucose concentration. The interaction of β-d-glucose with l-cysteine capped Au cluster colloids has been confirmed from their Fourier transformed infrared spectroscopy (FTIR) measurements. It has been found that the biomolecules present in the serum such as ascorbic and uric acids, proteins and peptides do not interfere and affect in glucose estimation as confirmed from their absorption and fluorescence (FL) emission measurements. Practical utility of this sensor based on FL quenching method has been demonstrated by estimating the glucose level in human serum that includes diabetes and the data were found to be comparable or more accurate than those of the pathological data obtained from a local hospital. In addition, this biosensor is useful to detect glucose level over a wide range with sensor response time of the order of nano to picoseconds that is emission lifetime of Au clusters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call