Abstract

We report on the synthesis of highly homogeneous mixed La/Ce-oxides via a microemulsion-templated approach, and their evaluation as active supports for Au in the water gas shift (WGS) reaction. Both structure and reducibility of the oxides could be tailored by adjusting the La content across the entire range of La:Ce-ratios. The reducibility of the Au-free oxides shows an optimum at ∼25% La content, which can be traced back to improved oxygen mobility due to formation of oxygen vacancies and to the formation of more strongly bound oxygen upon La addition.Deposition of Au onto these oxides gives rise to an additional, low-temperature reduction peak, presumably due to hydrogen spill-over from the noble metal onto the oxide support. The WGS activity of Au/LaxCe1−xO2−0.5x catalysts correlates closely with the reducibility of the oxide supports, and hence with La content, demonstrating that carefully controlled synthesis of nanostructured catalysts with uniform, tailored composition allows for fine control of reactive properties of these materials, and might ultimately open the way towards a more rational design of catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.