Abstract

High-energy X-ray and ultraviolet (UV) radiation from young stars impacts planetary atmospheric chemistry and mass loss. The active ∼22 Myr M dwarf AU Mic hosts two exoplanets orbiting interior to its debris disk. Therefore, this system provides a unique opportunity to quantify the effects of stellar X-ray and UV irradiation on planetary atmospheres as a function of both age and orbital separation. In this paper, we present over 5 hr of far-UV (FUV) observations of AU Mic taken with the Cosmic Origins Spectrograph (COS; 1070-1360 Å) on the Hubble Space Telescope (HST). We provide an itemization of 120 emission features in the HST/COS FUV spectrum and quantify the flux contributions from formation temperatures ranging from 104 to 107 K. We detect 13 flares in the FUV white-light curve with energies ranging from 1029 to 1031 erg s. The majority of the energy in each of these flares is released from the transition region between the chromosphere and the corona. There is a 100× increase in flux at continuum wavelengths λ < 1100 Å in each flare, which may be caused by thermal Bremsstrahlung emission. We calculate that the baseline atmospheric mass-loss rate for AU Mic b is ∼108 g s−1, although this rate can be as high as ∼1014 g s−1 during flares with erg s−1. Finally, we model the transmission spectra for AU Mic b and c with a new panchromatic spectrum of AU Mic and motivate future JWST observations of these planets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call